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The Hull-White model and multiobjective calibration
with consistent curves: empirical evidence

A. Falc ó, Ll. Navarro and J. Nave

Abstract. We present a new methodology for the calibration of the Hull-White model to US mar-
ket prices with consistent curves. It falls into the generalclass of nonlinear multicriteria optimization
problems and we show how this algorithm is able to build a set of dicrete Pareto points of the implied
trade-off curve. We also evaluate its fitting capabilities against non-consistent traditional methods with
very promising results.

El modelo de Hull-White y la calibraci ón multiobjetivo
con curvas consistentes: Evidencia empı́rica

Resumen. El objetivo de este trabajo es la presentación de una nueva metodologı́a para la calibración
del modelo de Hull-White mediante el empleo de curvas consistentes, y tomando como datos empı́ricos
los precios del mercado norteamericano. La base de nuestra propuesta está basada en el empleo de una
clase de problemas de optimización multicriterio no lineales. Comparamos además, la capacidad de ajuste
del algoritmo frente a los métodos tradicionales, basadosen el uso de curvas no consistentes, obteniendo
unos resultados que avalan la eficiencia de la metodologı́a propuesta.

1 Introduction

Any acceptable model which prices interest rate derivatives must fit the observed term structure. This idea
pioneered by Ho and Lee [17], has been explored in the past by many other researchers like Black and
Karasinski [10] and Hull and White [18].

The contemporary models are more complex because they consider the evolution of the whole forward
curve as an infinite system of stochastic differential equations (Heath, Jarrow and Morton [16]). In par-
ticular, they use as initial input, a continuous forward rate curve. In reality, we just observe a discrete set
composed either by bond prices or swap rates. So, in practice, the usual approach is to interpolate the
forward curve by using splines or other parametrized families of functions.

A very plausible question arises at this point: Choose a specific parametric family,G, of functions
that represent the forward curve, and also an arbitrage freeinterest rate modelM. Assume that we use
an initial curve that lay within as input for modelM. Will this interest rate model evolve through forward
curves that lay within the family? Motivated by this question, Björk and Christensen [7] define the so-called
consistent pairs(M,G) as ones whose answer to the above question is positive. In particular, they studied
the problem of consistency the family of curves propositioned by Nelson and Siegel [21] and any HJM
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interest rate model with deterministic volatility, obtaining that there is no such interest model consistent
with it.

We remark that the Nelson and Siegel interpolating scheme isan important example of a parametric
family of forward curves, because it is widely adopted by central banks (see for instance BIS [3]). Its
forward curve shape,GNS(z, ·) is given by the expression

GNS(z, x) = z1 + z2 e−z4x + z3 x e−z4x,

wherex denotes time to maturity andz the parameter vector

z = (z1, z2, . . .).

Despite all the positive empirical features and general acceptance by the financial community, Filipović [15]
has shown that there is no Itô process that is consistent with the Nelson-Siegel family. In a recent study
De Rossi [13] applies consistency results to propositione a consistentexponential dynamic model, and
estimates it using data on LIBOR and UK swap rates. On the other hand, Buraschi and Corielli [11] add
results to theoretical framework indicating that the use ofinconsistent parametric families to obtain smooth
interest rate curves, violates the standard self financing arguments of replicating strategies, with direct
consequences in risk management procedures.

In order to illustrate this situation, we describe a very common fixed-income market procedure. In the
real world, the practitioners usually re-estimate yield curve and HJM model parameters on a daily basis.
This procedure consists of two steps:

• They fit the initial yield curve from discrete market data (bond prices, swap rates, short-term zero
rates), then

• They obtain an estimation of the parameters of the HJM model,minimizing the pricing error of some
actively traded (plain vanilla) interest rate derivatives(commonly swap options or caps)

We remark that this pure cross-sectional procedure itself ought to take into account that it will be repeated.
If M andG are inconsistent, then the interest rate model will produceforward curves outside the family
used in the calibration step, and this will force the analystto change model parameters all time, and not
because the model is not thetruth model, but simply because the family does not go well with the model.
Put into applied terms, if we want to maintain recalibrationas a coherent practice for incorporating newly
arrived information from the market, then our familyG of forward rate curves should be chosen to be
consistent with the modelM.

The consistency hypothesis stated by Björk, implies that the zero coupon bond curve has to be deter-
mined at the same time as the parameters of the model. Angelini and Herzel [1] propositione the use of a
optimization program related to the mentioned daily calibrations, which is compatible with this joint esti-
mation. The milestone of this methodology is the use of an objective function based on an error measure for
just the caps portfolio. Then, the theoretical prices for the caps along with the minimization of this measure
can be calculated at the same time that yield-curve is fitted.This is an efficient method because consistent
families of yield-curves have a good behaviour in a Gaussianframework.

The purpose of this work is to extend the above strategy to a more general framework. It modifies the
objective function mentioned, by taking into account the error measure for the discount bonds estimation.
To this scope, we construct the objective function using a convex combination of the cap and the bond error
measures, by means of a fixed parameter. As a matter of fact, this rigorous approach is richer in possible
outcomes.

To this end, we restrict ourselves to the one-factor extended Vasicek [22] model originally introduced
by Hull and White [18], calibrated on a US data set consisting of US term structures of interest rates (TSIR,
from now) and cap quotes between 12/09/2001 and 23/08/2002 (see Figure1).

This paper is organized as follows. In Section2 we give a brief overview of the model and present in this
context the option valuation and the construction of the consistent families with the model. In Section3 the
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Figure 1. Average of the US market TSIR and TSV with 99% confidence levels.

calibration procedure is described. Section4 is devoted to empirical results, first comparing the consistent
calibration algorithm to the non-consistent approaches with simulated data, then presenting the results of the
fitting of the different models with US-market data. In the last section we give some concluding remarks.

2 The Model

Let W be a one dimensional Wiener stochastic process defined in a complete probability space(Ω,F , P ).
Single factor Heath-Jarrow-Morton [16] framework is based on the dynamics of the entire forward rate

curve,{rt(x), x > 0}. Thus, under Musiela’s [20] parameterization it follows that the infinite dimensional
diffusion process given by

{

drt(x) = β(rt, x) dt + σ(rt, x) dWt

r0(x) = r∗(x),
(1)
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where{r∗(x), x ≥ 0}, can be interpreted as theobservedforward rate curve. The standard drift condition
derived in Heath, Jarrow and Morton [16] can easily transferred to the Musiela parametrization (see, for
instance, Musiela [20]),

β(rt, x) =
∂

∂x
rt(x) + σ(rt, x)

∫ x

0

σ(rt, s) ds.

Thus, a particular model is constructed by the choice of an explicit volatility function σ(rt, x).
Recall that our work is devoted to the Hull-White model that falls into the class of HJM models with

σ(rt, x) = σ(x) = σe−ax.

The Hull-White model improve Ho-Lee model incorporating mean-reversion and providing closed formulas
for liquid options like interes rate caps. This model is one of the simplest Gaussian HJM models which
preserves the Markov property, allowing very efficient numerical methods for the pricing of exotic options.
On the negative side, it does not capture humped shapes of theterm structure of volatilities (TSV hereafter).
However, it exhibits a relative good performance when it is chosen as a parsimonious solution for bussiness
cycles with monotonically decreasing TSV, as it is shown by [2].

2.1 Forward Representation of the Model

It should be also noted thatσ(x) is a one dimension quasi-exponential function (QE for short), because is
of the form

f(x) =
∑

i

eλix +
∑

i

eαix
[

pi(x) cos(ωix) + qi(x) sin(ωix)
]

,

with λi, αi, ωi being real numbers andpi, qi are real polynomials.
It is well-known that if f(x) is a m-dimensional QE function, then it admits the following matrix

representation
f(x) = c eAxB,

whereA is a(n × n)-matrix,B is a(n × m)-matrix andc is an-dimensional row vector (see Lemma 2.1
in Björk [5]). Thus,σ(x) can be written as

σ(x) = c eAxb, where

c = 1,

A = −a,

b = σ.

By means of Proposition 2.1 in Björk [4] we can write the forward rate equation (1) as:

dqt(x) = Fqt(x) dt + σ(x) dWt, q0(x) = 0

rt(x) = qt(x) + δt(x), (2)

hereF is a linear operator that is defined by

F =
∂

∂x
,

andδt(x) is the deterministic process given by

δt(x) = r∗(x + t) +

∫ t

0

Σ(x + t − s) ds,

with

Σ(x) = σ(x)

∫ x

0

σ(s) ds.
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Moreover,qt(x) has the concretefinite dimensionalrealization

dZt = −aZt dt + σ dWt, Z0 = 0, (3)

qt(x) = e−axZt,

see, for instance, Proposition 2.3 in Björk [5]. Thus, (3) is a linear SDE in the narrow sense (see Kloeden
and Platen [19] for details) with explicit solution

Zt = σe−at

∫ t

0

eas dWs,

Now, with the definition ofS(x) =
∫ x

0 σ(u) du, it is easy to obtain that
∫ t

0

Σ(t + x − s) ds =
1

2

[

S2(t + x) − S2(x)
]

,

and, therefore, combining these explicit results with decomposition (2) we arrive to the forward rate dy-
namics

rt(x) = r∗(x + t) +
1

2

[

S2(t + x) − S2(x)
]

+ e−axZt. (4)

Equation (4) allows to perform the Monte Carlo simulation of future forward curves produced by the model
and may be useful for risk managing purposes. As we show next,this last expression may be used to build
initial forward rate curvesr∗(x) time-consistent with the model.

2.2 Consistent Curves with the Model

If we want to measure the actual impact that alternative choices to the Nelson-Siegel yield curve interpolat-
ing approach produces on derivatives pricing and hedging, we need to determine consistent families for this
particular model. The fundamental results can be found in Björk and Christensen [7] in more detail. We
adapt some of them to our Gaussian case study without furthertechnical discussion for the general case.

Definition 1 Consider the spaceH is defined as the space of allC∞-functions,

r : R+ → R

satisfying the norm condition:

‖r‖2 =
∞
∑

n=0

2−n

∫ ∞

0

(

dnr

dxn
(x)

)2

e−γx dx < ∞

whereγ is a fixed positive real number.

As proved by Björk and Landen [8], this spaceH is a Hilbert space.

Theorem 1 Consider as given the mapping

G : Z → H

where the parameter spaceZ is an open connected subset ofRd, H a Hilbert space and theforward curve
manifoldG ⊆ H is defined asG = Im(G). The familyG is consistent with the one-factor modelM with
deterministic volatility functionσ(·), if and only if

∂xG(z, x) + σ(x)

∫ x

0

σ(s) ds ∈ Im [∂zG(z, x)] , (5)

σ(x) ∈ Im [∂zG(z, x)] , (6)

for all z ∈ Z.
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The statements (5) and (6) are called, respectively,the consistent driftand the consistent volatility
conditions. These are easy to apply in concrete cases as shown Björk and Christensen [7] or De Rossi [13],
among others.

For the particular one-factor model we consider along this work, Proposition 7.2 and 7.3 in Björk and
Christensen [7] may be directly applied to get the useful result:

Proposition 1 The family
Gm(z, x) = z1e

−ax + z2e
−2ax, (7)

is the minimal dimension consistent family with the model characterized byσ(x) = σe−ax.

There is a way to justify (7) focusing on forward rate evolution deduced at (4), and to get an in-
sight on how the simulations may be implemented for risk management purposes, we describe it next.
By the definition ofS(x), we have thatS′(x) = σ(x). Then it is easy to derive that deterministic term
(

S2(t + x) − S2(x)
)

/2 is of the form

g(t) e−ax + h(t) e−2ax.

Thus, the forward rate evolution becomes

rt(x) = r∗(x + t) + (g(t) + Zt) e−ax + h(t) e−2ax. (8)

From (8) we see that a family which is invariant under time translation is consistent with the model if and
only if it contains the linear space{e−ax, e−2ax}. It should be also noted that the map

G(z, x) = Gm(z, x) + φ(z, x),

whereφ(·), is an arbitrary function, is also consistent with this model.
The following concluding remarks about the families used along this work should now be clear:

• The Nelson-Siegel family (henceforth NS)

GNS(z, x) = z1 + z2 e−z4x + z3 x e−z4x,

is not consistent with the model.

• The family
Gm(z, x) = z1e

−ax + z2 e−2ax,

it is the lowest dimension family consistent with the model (hereafter MC).

• The family
GANS(z, x) = z1 + z2 e−ax + z3 x e−ax + z4 e−2ax,

is the simplest adjustment based on restricted NS family that allows model consistency (hereafter
ANS).

2.3 Interest Rate Option Pricing

To calibrate the model by means of real data, we actually needto determine the vector parameterθ = (σ, a).
In order to estimate the forward rate volatility, the statistical analysis of past data can be a possible approach,
but the practitioners usually prefer implied volatility, laying within some derivative market prices, based
techniques. This way involves a minimization problem wherethe loss function can be taken as

l(θ) =

n
∑

i=1

(

C∗
i − Ci(θ, Ti)

)2
,
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whereCi(θ) are thei-th theoretical derivative price andC∗
i ≡ C∗(Ti) is thei-th market price one. As it is

well known, see Propositions 24.12 and 24.13 on pages 361–362 in Björk [6], the price, att = 0, of the cap
is given by

C(T ) = (1 + τK)





n−1
∑

j=0

κD(xj)N(−d+) − D(xj+1)N(−d−)



 , (9)

where

d± =
ln

D(xj)
κD(xj+1)

± 1
2ϑ2(xj)

ϑ(xj)
. (10)

the interval[0, T ] is subdivided with equidistant points, i.e.,

xj = (j + 1)τ j = 0, 1, . . . , n;

D(·) is the initial discount function,κ equals to(1 + τK)−1 with K denoting thecap rate, and volatility
functionϑ(·)

ϑ(xj) =
σ

a

(

1 − e−aτ
)

√

1 − e−2axj

2a
.

The equations (9) and (10), also express the effective influence ofab initio yield curve estimation on
cap pricing.

3 Calibration to Market Data Approaches

The calibration procedures can be described formally as follows. Letθ be the vector(σ, a) of parameter
values for the model under consideration. Assume that we have time series observations of the implicit
volatilities, σB

i , of N caps, with different ATM strikes, Ki, and maturitiesTi with i = 1, . . ., N , here
N = 7. Suppose we are also equipped with the discount function estimation,D(x), at timet = 0.

Market participants translate volatility quotes to cash quotes adopting Black model [9]. In addition, they
make the well-known convention thatKi quantities must be equal to

Ki =
D(τ) − D(Ti)

τ
∑n

j=1 D(xj)
, (11)

whereτ = xj+1 − xj is the length of the underlying caplets. The derivation of the formula (11) can be
found, for example, in Björk [6] (Proposition 20.7 on pages 312–313). Now, by inspection, it is clear that
this market convention makes thatKi depends on the yield-curve estimation. It allows to us to denote
market prices of caps withC∗(Ti, D(x), Ki(D(x)), σB

i ). This last expression emphasizes explicit and
implicit dependence (through ATMstrikes) on discount function estimation even for market prices. Let
C(Ti, D(x), Ki(D(x)), θ) be the corresponding theoretical price under our particular model.

3.1 The Two-Step Traditional Method

First, we choose a non-consistent parametrized family of forward rate curvesG(z, x). Let D(z, x) be the
zero-coupon bond prices reported byG(z, x). Let D∗

k be the corresponding discount factor observations
on maturitiesxk with k = 1, . . ., M = 10. For each zero-coupon bond denoted with subscriptk, the
logarithmic pricing error1 is written as follows

ǫk(z) = log D∗
k − log D(z, xk).

1Recall that, for smallǫk, it is also the relative pricing error
D∗

k−D(z,xk)

D∗

k

.
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Then, we have chosen in this work the sum of squared logarithmic pricing errors,lD, as the objective loss
function to minimize:

lD = min
z

‖logD∗ − log D(z, x)‖2 = min
z

M
∑

k=1

ǫ2k(z). (12)

Now, via the least squares estimatorsẑ, an entire discount factor estimation allows the pricing ofcaps using
market practice or a HJM model. Following a similar scheme for the derivatives fitting than the used at the
bond side we have

ηi(θ) = log C∗
i − log C(θ, Ti).

and

lC = min
θ

‖logC∗ − log C(θ, T )‖2 = min
θ

N
∑

i=1

η2
i (θ), (13)

where we have summarized dependencies for simplicity. Notethat yield-curve estimation is external to the
model in the sense that there is no need to know first any of the model parametersθ for solving non-linear
program (12).

3.2 The Joint Calibration to Cap and Bond Prices

Let us now describe in detail the joint cap-bond calibrationprocedure which has sense in a consistent
family framework. We note that in this situation the parameters of the model are determined together with
the initial forward rate curve.

This is different from the traditional fitting of the Hull-White model, where the two steps are separate, as
we discussed before. From the expression (7), we notice the dependency of the family from the parametera.
LetG(z, x, a) be a family consistent with our gaussian model (for instance, Gm andGANS) and define least-
squares estimators,ẑ(a)

ẑ(a) = argmin
z

M
∑

k=1

(

log D∗
k − log D(z, a, xk)

)2
. (14)

From the expression

log D(z, a, xk) = −

∫ xk

0

G(z, a, s) ds =

np
∑

j=1

Mkj(a)zj , (15)

we note that, for consistent families and for a fixeda the problem (14) is linear inz-parameters (for the
Gm family np = 2, and for theGANS family np = 4). Thus,ẑ is an explicit and continuous function ofa.
Strictly speaking, joint calibration must be formalized asa multicriteria optimization problem (MOP):

min
(σ,a)∈S

l(σ, a) =

[

lD(a)
lC(σ, a)

]

, l : R
2 → R

2

where
S = { a : h(a) = 0 }

with
h(a) = z − R(a)Q−1(a) log D∗

beingQ, R matrices of the reduced QR decomposition ofM(a) which is defined by the relation (15) and
partial loss functions, li(σ, a), defined as

lC(σ, a) = ‖logC∗ (D(z, σ, a)) − log (D(z, θ), σ, a)‖2

lD(a) = ‖logD∗ − M(a)z‖2
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Note that it is highly probable that these objectives would both be conflicting, in general, and since no
single(σ̂, â) would generally minimize everyli simultaneously, we are dealing with Pareto optimality. A
popular and acceptable method for finding a discrete set of Pareto optimal points requires to build a convex
combination of the objectives into a single objective function and minimize the single objective over various
values of the control parameter used to combine the objectives, see for instance [14]:

min
(σ,a)∈S

λ
T
l(σ, a) = λDlD(a) + λC lC(σ, a) (16)

with λ ∈ (R+ ∪ {0})2 andλC + λD = 1.
This algorithm provides a discrete collection of Pareto optimal points representative of the entire spec-

trum of efficient solutions as noted in [12]. Thus ideally, consistent calibration carried out with consistent
families involves the entire Pareto optimal set, in contrast to the uniqueness for the solution that appears in
the two-step scalar problem.

At this point, note that the program used by Angelini and Herzel [1, 2] in their works, uses a different
goal attainment

l = min
(σ,a)∈S

lC(σ, a)

wherelC(σ, a), andẑ(a) are defined trough the identities (13) and (14). As a consequence, the program
used by these authors is a degenerate case of (16) with λC fixed equal to1, so it just allows to obtain one
point of the implied trade-off curve.

4 Empirical Results

In this context the main goal is to analyze the impact that an alternative interpolation scheme has on the
fitting capabilities of the model. To this end, we use as a measure, the daily (on average) relative pricing
errors, hereafterRPEC :

RPEC =
1

N

N
∑

i=1

|C∗
i − C(σ̂, â, Ti)|

C∗
i

The same kind of measure is used for the zero-coupon bond prices and we denote it withRPED:

RPED =
1

M

M
∑

k=1

|D∗
k − D(ẑ(â), â, xk)|

D∗
k

We perform such analysis focusing on US market. The real dateconsists of 248 daily observations, between
12/09/2001 and 23/08/2002. The data set is composed of US discount factors for ten maturities (from 1 to
10 years) and of implied volatilities of at-the-money interest rate caps with maturities 1, 2, 3, 4, 5, 7, 10
years. This database is provided by Datastream Financial Service

As it have been explored before, daily joint calibration of caps and bonds with consistent families must
be properly carried out as a constrained vector optimization problem. Figure2 shows the in-sample fitting
results reported by the MC family for all sample under analysis. We remark that we have divided them into
two graphs just for the ease of visual inspection. The methodof convex combinations was run for every
date in sample with several weight vectorsλ. In doing so, we assume the same 10 logarithmically spread
values

λC = 10x with x = −2 + j
2

9
andj = 0, 1, 2, . . . , 9

as the second vector component for all trading dates. Observe that efficient frontiers with regular shapes
appear all the days nicely revealing the intrinsic multiobjective nature of the consistent calibration. More-
over, note that it can be found very different topologies forthis frontiers depending on the date. Some
days the objectives are conflicting and the better we fit the zero coupon bonds the worse we calibrate caps
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Figure 2. Daily calibration results for the minimal consistent family. The sample is divided into two
periods for ease of visualization.

portfolio. However, another days we can achieve better results for both components of vector objective
without a trade-off (there exists what is called a utopia point for the implied Pareto curve). The tables on
Table1 show, as a numerical example, the two different situations explained before restricting to the mini-
mal parametrized family. If we look on both tables, it must bealso noted that for a fixed trading date the best
cap fit results may occur withλC 6= 1, even if the objectives are competing. In Figure3, we analize more
deeply the latter fact this time for both, MC and ANS, consistent families. We plot the second component
of weight vectors,λC , which is responsible of the best calibration for caps on topgraph. Then, we repeat
the same exercise on the bottom graph, searching, in this case, for the ones which produce the best fit of
the corresponding discount curve. As it is shown, most of thedays the weight vector(λD = 0, λC = 1)
produces the best cap calibration results but there is a non-negligible number of bussiness dates where an-
other weights produce better goals than it. On the zero curveside, in most of the cases, we find the best fit
results when weights are fixed to(λD = 0.99, λC = 0.01), but again, in some dates another weight choices
achieve a better yield curve estimation.

For the shake of simplicity, from now on we will only considerthe calibration results obtained with
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DAY 1

λD λC RPED (%) RPEC (%)
0.99 0.01 0.1695 0.8851
0.98 0.02 0.1705 0.8865
0.97 0.03 0.1714 0.8880
0.95 0.05 0.1722 0.8895
0.92 0.08 0.1728 0.8906
0.87 0.13 0.1733 0.8915
0.78 0.22 0.1736 0.8921
0.64 0.36 0.1738 0.8925
0.40 0.60 0.1739 0.8928
0.00 1.00 0.1740 0.8929

DAY 2

λD λC RPED (%) RPEC (%)
0.99 0.01 0.1321 1.6436
0.98 0.02 0.1347 1.6103
0.97 0.03 0.1372 1.5969
0.95 0.05 0.1393 1.5963
0.92 0.08 0.1423 1.5962
0.87 0.13 0.1452 1.5964
0.78 0.22 0.1472 1.5966
0.64 0.36 0.1484 1.5968
0.40 0.60 0.1492 1.5969
0.00 1.00 0.1497 1.5970

Table 1. Efficient points in the RPED-RPEC space using the method of convex combinations for
two different days in sample. The partial objectives, lC and lD are cooperative, for the Day 1 (top).
In contrast, the latter ones are conflicting for the Day 2 (bottom).

SUMMARY STATISTICS

MC ANS NS
σ 0.0186 0.0221 0.0218
a 0.0838 0.1911 0.1796

Cv(σ) 0.0934 0.1453 0.1406
Cv(a) 0.2245 0.3922 0.3821

RPEC (%) 1.8059 2.4123 2.5997
RPED (%) 0.2278 0.0467 0.0567

Table 2. Summary statistics for the calibration results. In-sample descriptive statistics are carried
out using the daily Pareto points with best derivative fit capabilities

daily weights choices that produce the best calibration forthe caps on every trading date. For instance, this
rational approximation to the problem may be followed by a market participant which pursues a good risk
management or pricing tool restricted to the OTC derivatives market. On the opposite direction, note that
the most desirable behaviour for a regulator (like Federal Reserve or ECB) may be consider the weights
which allow the best fits for the zero rates. Following the first rational approach to Pareto point selection, in
Table2, we compare summary statistics of the parameter estimates and the in-sample fit measures reported
by NS, MC and ANS families. In addition, Figure4 shows the comparison of in-sample fitting results in
time series. The two consistent families under study reportbetter RPE results when we restrict the analysis
to cap data. For RPE on bonds, only the ANS family outperformsNS in the sample. Recall that this fact is
acceptable since MC family is a family with less number of parameters than the other ones propositioned.
Moreover, on caps, note that the MC family appears to give better results than its consistent counterpart,
ANS. Now, this behaviour can be explained because the major of dates considered, market conditions make
the objective functionslD andlC to conflict.

5 Conclusions

When calibrating the Hull-White model, a TSIR curve choice to fit a few market data observations is needed.
In particular it seems to be natural to use families of curveswhich do not modify their structure under the
future evolution of the model, the so-called consistent families.
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Figure 3. On top, daily weights of the multiobjective program with the best RPEC for both con-
sistent families. On the bottom, we choose the daily values which are responsible for the best
RPED.

In this work, we choose three families of curves (two consistent families and the popular Nelson-Siegel
family) and we conclude that this choice have an effective impact on the quality of in-sample fitting for
US-market data. Moreover, this paper extends the seminal calibration algorithm propositioned in Angelini
and Herzel [1].

In a consistent approach the parameters of model are estimated jointly with the esmation of initial
discount function. Thus, from a rigorous point of view, joint calibration of caps and bonds must be viewed
as a constrained vector optimization problem. Although themain objective of the algorithm is to minimize
the relative differences of cap prices too, note that the vector extension of the consistent calibration presents
more general features. Such extension is structured to allow more numerical outcomes and we observe that
it allows to better fit results for both, caps and bonds, than the above mentioned. In particular, it is possible
to find better cap calibration outcomes withλC 6= 1, and this is definitively different from what worked
Angelini and Herzel [1] on Hull-White model, where only the fixedλC = 1 seems to be considered for
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Figure 4. Time Series Comparison.

all consistent families. The empirical findings of this paper show that, in general, consistent calibration on
every date must to be carried out by analyzing the entire shape of the Pareto curve.

In this sense, this work confirms and complements the shown byAngelini and Herzel [1, 2] restricte
to a Euro data set. We restrict possible outcomes on every date, by choosing the Pareto points which are
responsible of better fit results on caps. Then the minimal consistent family gives the best performance in
terms of caps pricing errors and becomes a good candidate forthe calibration of the Hull-White model.
The ANS consistent family performs very close to the Nelson-Siegel family, though it seems to be the
best solution for estimating the discount function. Now, this could be explained in the context of vector
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optimization. We show empirically the usual competing behaviour followed by the objectives through
the sample considered. Then, the minimal parameterized consistent family relax the performance on the
estimation of the discount function, allowing minor relative pricing errors on caps.

Future empirical research on the matter should include multi-factor models for capturing more general
TSIR and TSV observed in the market.

Another technical point regards the adaptation of theNormal Boundary Intersection(NBI) method to
use it in the calibration problems that usually appear in theprivate and public financial institutions. As is
mentioned by Das and Dennis in [12], NBI method surpass in flexibility as well as efficiency the popular
method of minimizing weighted combinations of objective functions.
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