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The Hull-White model and multiobjective calibration
with consistent curves: empirical evidence

A. Falc 6, LI. Navarro and J. Nave

Abstract.  We present a new methodology for the calibration of the Nviiite model to US mar-
ket prices with consistent curves. It falls into the genetaks of nonlinear multicriteria optimization
problems and we show how this algorithm is able to build a §eliaete Pareto points of the implied
trade-off curve. We also evaluate its fitting capabilitiggiast non-consistent traditional methods with
very promising results.

El modelo de Hull-White y la calibraci  én multiobjetivo
con curvas consistentes: Evidencia empirica

Resumen. El objetivo de este trabajo es la presentacion de una nuetadologia para la calibracion
del modelo de Hull-White mediante el empleo de curvas ctersiss, y tomando como datos empiricos
los precios del mercado norteamericano. La base de nuespagsta esta basada en el empleo de una
clase de problemas de optimizacion multicriterio no llssaComparamos ademas, la capacidad de ajuste
del algoritmo frente a los métodos tradicionales, basadad uso de curvas no consistentes, obteniendo
unos resultados que avalan la eficiencia de la metodologpupsta.

1 Introduction

Any acceptable model which prices interest rate derivativest fit the observed term structure. This idea
pioneered by Ho and Le€l J], has been explored in the past by many other researcher8lack and
Karasinski [L0] and Hull and White 19].

The contemporary models are more complex because theydeoitise evolution of the whole forward
curve as an infinite system of stochastic differential eiguat(Heath, Jarrow and Mortori§]). In par-
ticular, they use as initial input, a continuous forwarceratirve. In reality, we just observe a discrete set
composed either by bond prices or swap rates. So, in prattieeusual approach is to interpolate the
forward curve by using splines or other parametrized fawitif functions.

A very plausible question arises at this point: Choose aipgmarametric family,G, of functions
that represent the forward curve, and also an arbitrageiritesest rate modeM. Assume that we use
an initial curve that lay within as input for modét. Will this interest rate model evolve through forward
curves that lay within the family? Motivated by this queastiBjork and Christensen] define the so-called
consistent pairé M, G) as ones whose answer to the above question is positive. tinyar, they studied
the problem of consistency the family of curves proposgibiby Nelson and SiegeP{] and any HIM

Presentado por / Submitted by Alejandro Balbas.

Recibido / Received27 de diciembre de 2008ceptado / Accepted4 de marzo de 2009.

Palabras clave / Keyword<Consistent forward rate curves, multiobjective calilomtinterest rate models.
Mathematics Subject ClassificatiorlB28, 62P0.

(© 2009 Real Academia de Ciencias, Espafia.

235



A. Falcé, LI. Navarro and J. Nave

interest rate model with deterministic volatility, obtaig that there is no such interest model consistent
with it.

We remark that the Nelson and Siegel interpolating scherae isnportant example of a parametric
family of forward curves, because it is widely adopted bytcarbanks (see for instance BIS]]. Its
forward curve shap&; ys(z, -) is given by the expression

Gns(z,@) =21 + z0e" #7 + 23w 17,

wherex denotes time to maturity andthe parameter vector
z=(z1,292,...).

Despite all the positive empirical features and generagiance by the financial community, Filipovitd]
has shown that there is no 1td process that is consistehttivt Nelson-Siegel family. In a recent study
De Rossi [3] applies consistency results to propositione a consisgggpbnential dynamic model, and
estimates it using data on LIBOR and UK swap rates. On ther didued, Buraschi and CorielliL[l] add
results to theoretical framework indicating that the usmobnsistent parametric families to obtain smooth
interest rate curves, violates the standard self financiggnaents of replicating strategies, with direct
consequences in risk management procedures.

In order to illustrate this situation, we describe a very owoon fixed-income market procedure. In the
real world, the practitioners usually re-estimate yieldveuand HIM model parameters on a daily basis.
This procedure consists of two steps:

e They fit the initial yield curve from discrete market data rfldqorices, swap rates, short-term zero
rates), then

e They obtain an estimation of the parameters of the HIM madieimizing the pricing error of some
actively traded (plain vanilla) interest rate derivatig@emmonly swap options or caps)

We remark that this pure cross-sectional procedure itsgjhoto take into account that it will be repeated.
If M andg are inconsistent, then the interest rate model will prodaogard curves outside the family
used in the calibration step, and this will force the analgsthange model parameters all time, and not
because the model is not tireith mode] but simply because the family does not go well with the model
Put into applied terms, if we want to maintain recalibratésna coherent practice for incorporating newly
arrived information from the market, then our family of forward rate curves should be chosen to be
consistent with the mode1.

The consistency hypothesis stated by Bjork, implies thatzero coupon bond curve has to be deter-
mined at the same time as the parameters of the model. AhgatirHerzel [] propositione the use of a
optimization program related to the mentioned daily calitans, which is compatible with this joint esti-
mation. The milestone of this methodology is the use of arahje function based on an error measure for
just the caps portfolio. Then, the theoretical prices fer¢aps along with the minimization of this measure
can be calculated at the same time that yield-curve is fiffédk is an efficient method because consistent
families of yield-curves have a good behaviour in a Gaussamework.

The purpose of this work is to extend the above strategy to@ general framework. It modifies the
objective function mentioned, by taking into account th@emeasure for the discount bonds estimation.
To this scope, we construct the objective function usingraeven combination of the cap and the bond error
measures, by means of a fixed parameter. As a matter of factidbrous approach is richer in possible
outcomes.

To this end, we restrict ourselves to the one-factor exténésicek 2] model originally introduced
by Hull and White [Lg], calibrated on a US data set consisting of US term strustofeterest rates (TSIR,
from now) and cap quotes between 12/09/2001 and 23/08/2@@2Kigurel).

This paper is organized as follows. In Sectiwe give a brief overview of the model and present in this
context the option valuation and the construction of thestsiant families with the model. In Secti8rthe
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Figure 1. Average of the US market TSIR and TSV with 99% confidence levels.

calibration procedure is described. Sectibis devoted to empirical results, first comparing the coasist
calibration algorithm to the non-consistent approachés simulated data, then presenting the results of the
fitting of the different models with US-market data. In thstlaection we give some concluding remarks.

2 The Model

Let W be a one dimensional Wiener stochastic process defined implete probability spac&?, F, P).

Single factor Heath-Jarrow-Morton§] framework is based on the dynamics of the entire forwarel rat
curve,{r,(z), x > 0}. Thus, under Musiela’s?[J] parameterization it follows that the infinite dimensional
diffusion process given by

(1)

ro(x) = r*(x),

{drt(x) = B(ry,x) dt + o(ry, ) AW,
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where{r*(z), x > 0}, can be interpreted as tlidservedorward rate curve. The standard drift condition
derived in Heath, Jarrow and Mortofd] can easily transferred to the Musiela parametrizatioe,(far
instance, MusielaZ0)]),

Blry,x) = %rt(x) + o(ry,x) /OUE o(re,s)ds.

Thus, a particular model is constructed by the choice of afi@kvolatility function o (r, x).
Recall that our work is devoted to the Hull-White model tralsfinto the class of HIM models with

o(ry,x) = o(x) = oe 4.

The Hull-White model improve Ho-Lee model incorporatinganereversion and providing closed formulas
for liquid options like interes rate caps. This model is ofi¢he simplest Gaussian HIM models which
preserves the Markov property, allowing very efficient nuoa methods for the pricing of exotic options.
On the negative side, it does not capture humped shapestefthatructure of volatilities (TSV hereafter).
However, it exhibits a relative good performance when itissen as a parsimonious solution for bussiness
cycles with monotonically decreasing TSV, as it is shown&y [

2.1 Forward Representation of the Model

It should be also noted thatfx) is a one dimension quasi-exponential function (QE for ghbecause is
of the form
flx) = Z eMi® 4 Z ¥ [ps(x) cos(ww) + qi(x) sin(w;z)],

with \;, a;, w; being real numbers and, ¢; are real polynomials.
It is well-known that if f(x) is a m-dimensional QE function, then it admits the following niatr
representation
f(z) = ce®B,

whereA is a(n x n)-matrix, B is a(n x m)-matrix ande is an-dimensional row vector (see Lemma 2.1
in Bjork [5]). Thus,o(x) can be written as

o(z) = ce®b, where
c=1,
A= —a,
b=o

By means of Proposition 2.1 in Bjork] we can write the forward rate equatiol) @s:

dgi(z) = Fq(z) dt + o(z) AW, qo(z) =0
ri(z) = gi(x) + 6:(), ()

hereF is a linear operator that is defined by

andod,(x) is the deterministic process given by

o () —T*(x—i-t)—i-/otE(a:—i—t—s)ds,

with
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Moreover,g;(x) has the concreténite dimensionatealization
dZt = —aZt dt + O'th, ZO = O, (3)
qt(x) = e "7y,
see, for instance, Proposition 2.3 in Bjoii.[ Thus, @) is a linear SDE in the narrow sense (see Kloeden
and Platen19] for details) with explicit solution
t
Zy = cre*“t/ e dWs,
0

Now, with the definition ofS(z) = [ o(u) du, itis easy to obtain that

/ S(t 42— s)ds = % [S2(t + ) — ()]
0

and, therefore, combining these explicit results with adegosition @) we arrive to the forward rate dy-
namics

re(z) = (x4 1) + % [S2(t + ) — §2(2)] + e~ Z,. @)

Equation §) allows to perform the Monte Carlo simulation of future f@ma curves produced by the model
and may be useful for risk managing purposes. As we show tiésiast expression may be used to build
initial forward rate curves* () time-consistent with the model.

2.2 Consistent Curves with the Model

If we want to measure the actual impact that alternativead®iio the Nelson-Siegel yield curve interpolat-
ing approach produces on derivatives pricing and hedgiegiered to determine consistent families for this
particular model. The fundamental results can be found éwkBand Christenser/] in more detail. We
adapt some of them to our Gaussian case study without fughknical discussion for the general case.

Definition 1 Consider the spacH is defined as the space of &lf°-functions,
r: Ry = R

satisfying the norm condition:

o o 7 q"y 2
2 —n —
= 2 — TPdr < o0
It =32 / (dxn (x)) e do
wherey is a fixed positive real number.

As proved by Bjork and Landen], this spaceH is a Hilbert space.

Theorem 1 Consider as given the mapping
G:Z—H

where the parameter spacgis an open connected subseti®st, H a Hilbert space and théorward curve
manifoldG C H is defined ag = Im(G). The familyg is consistent with the one-factor mode! with
deterministic volatility functiom (-), if and only if

0.G(z,z) + o(x) /OI o(s)ds € Im[0,G(z,2)], (5)
o(z) € Im[0,G(z,z)], (6)

forall z € Z.
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The statementsSf and @) are called, respectivelyhe consistent drifandthe consistent volatility
conditions. These are easy to apply in concrete cases asn ®jovk and Christenser’] or De Rossi [L3],
among others.

For the particular one-factor model we consider along thaskwProposition 7.2 and 7.3 in Bjork and
Christensenq] may be directly applied to get the useful result:

Proposition 1  The family
Gm(za :E) = Zle_am + 226—2111’ (7)

is the minimal dimension consistent family with the modatatterized by (z) = oe™*.

There is a way to justify q) focusing on forward rate evolution deduced 4}, (and to get an in-
sight on how the simulations may be implemented for risk ngan@ent purposes, we describe it next.
By the definition ofS(z), we have thatS’(z) = o(x). Then it is easy to derive that deterministic term
(S2(t 4 x) — S%(x)) /2 is of the form

g(t) e 4 h(t) e 2,
Thus, the forward rate evolution becomes
re(@) = 1 (@ + t) + (glt) + Ze) e~ + h(t) e 2, ®)

From @) we see that a family which is invariant under time tranelais consistent with the model if and
only if it contains the linear spade —*, e~2%¢}. It should be also noted that the map

G(z,2) = Gn(z,2) + ¢(z,x),

whereg(-), is an arbitrary function, is also consistent with this mode
The following concluding remarks about the families useaxhglthis work should now be clear:

e The Nelson-Siegel family (henceforth NS)

—z4T 24T

Gns(z,2) = 21 + 20 + zzxe” 4T

is not consistent with the model.

e The family

G(z,2) = 217% 4 2907297,
it is the lowest dimension family consistent with the modedrgafter MC).

e The family

—2ax
—+ Z4 € s

—ax —ax

Gans(z,2) = 21 + 20€ +z3we

is the simplest adjustment based on restricted NS familiy @ti@vs model consistency (hereafter
ANS).

2.3 Interest Rate Option Pricing

To calibrate the model by means of real data, we actually teegetermine the vector paramete (o, a).

In order to estimate the forward rate volatility, the state analysis of past data can be a possible approach,
but the practitioners usually prefer implied volatilitaying within some derivative market prices, based
techniques. This way involves a minimization problem whaeeloss function can be taken as

n

) = Y- (G — Gi(0. 1),

i=1
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whereC; () are thei-th theoretical derivative price andf" = C*(T;) is thei-th market price one. As itis
well known, see Propositions 24.12 and 24.13 on pages 3@lin®jork [6], the price, at = 0, of the cap
is given by

n—1
C(T) = (1+7K) | Y £D(x;)N(~dy) — D(w;11)N(=d-) |, 9)
j=0
where Do)
In sziﬁ + %192(%-)
= J(x)) (10)

the intervall0, T'] is subdivided with equidistant points, i.e.,
rp=0G+0r  j=01,...,m

D(+) is the initial discount functions equals to(1 + 7K )~! with K denoting thecap rateand volatility
functiond(-)
o 1 —e—2az;
HNa;)=—(1—e )/ ———
(IJ) a ( € ) 2a
The equations9) and (L0), also express the effective influenceatf initio yield curve estimation on
cap pricing.

3 Calibration to Market Data Approaches

The calibration procedures can be described formally devisl Letd be the vectofo, a) of parameter
values for the model under consideration. Assume that we Lime series observations of the implicit
volatilities, GZB, of N caps, with different ATM strikes K;, and maturities/; with s = 1, ..., N, here
N = 7. Suppose we are also equipped with the discount functiamaton, D(x), at timet = 0.

Market participants translate volatility quotes to cashtgs adopting Black moded]. In addition, they
make the well-known convention th&t; quantities must be equal to

_ D(r) - D(Ty)
TS D)’

wherer = z;41 — x; is the length of the underlying caplets. The derivation &f tbrmula (1) can be
found, for example, in Bjork€] (Proposition 20.7 on pages 312—-313). Now, by inspectiois,dlear that
this market convention makes that; depends on the yield-curve estimation. It allows to us tootken
market prices of caps witl* (T;, D(x), K;(D(x)),c?). This last expression emphasizes explicit and
implicit dependence (through ATMtrikeg on discount function estimation even for market pricest Le
C(T;, D(z), K;(D(x)), 0) be the corresponding theoretical price under our particatzdel.

K; (11)

3.1 The Two-Step Traditional Method

First, we choose a non-consistent parametrized family wfdeod rate curvesi(z, z). Let D(z,x) be the
zero-coupon bond prices reported &Yz, z). Let D; be the corresponding discount factor observations
on maturitiesr, with &k = 1, ..., M = 10. For each zero-coupon bond denoted with subsérighe
logarithmic pricing erroris written as follows

€x(z) = log Dy, — log D(z, zy,).

1Recall that, for smalky, it is also the relative pricing erro%*w.
k
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Then, we have chosen in this work the sum of squared logaidtpriting errors/p, as the objective loss
function to minimize:

Ip = min|log D* —log D(z,2)||* = mlnz en(z (12)

Now, via the least squares estimatéyan entire discount factor estimation allows the pricingayds using
market practice or a HIM model. Following a similar schenretie derivatives fitting than the used at the
bond side we have

n:(0) = log C; —log C(6,T;).

and

lc = minlog C* —1og C(0,T)|* = manm : (13)

where we have summarized dependencies for simplicity. Mraneyleld-curve estimation is external to the
model in the sense that there is no need to know first any of tiaehparameters for solving non-linear
program (2).

3.2 The Joint Calibration to Cap and Bond Prices

Let us now describe in detail the joint cap-bond calibratiwacedure which has sense in a consistent
family framework. We note that in this situation the paraangof the model are determined together with
the initial forward rate curve.

This is different from the traditional fitting of the Hull-Wie model, where the two steps are separate, as
we discussed before. From the expressnye notice the dependency of the family from the parameter
LetG(z, x, a) be a family consistent with our gaussian model (for instaGtg andGans) and define least-
squares estimator$(a)

M

2(a) = argminz (log D, — log D(z, a,xk))Q. (14)
k=1
From the expression
log D(z,a,x) = / G(z,a,s) dS—Zng a)zj, (15)

we note that, for consistent families and for a fixethe problem 14) is linear in z-parameters (for the
G, family n, = 2, and for theGans family n,, = 4). Thus,2 is an explicit and continuous function of
Strictly speaking, joint calibration must be formalizedaasiulticriteria optimization problem (MOP):

Ip(a) . w2 2
et = g fy| ER R
where
S={a:h(a)=0}
with

h(a) = z — R(a)Q *(a) log D*

being®, R matrices of the reduced QR decomposition\éfa) which is defined by the relatioi$) and
partial loss functiond; (o, a), defined as

lo(o,a) = |[logC* (D(2,0,a)) —log (D(z,0),0,a)|?
Ip(a) = [log D* — M (a)z|?
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Note that it is highly probable that these objectives woudthtbe conflicting, in general, and since no
single(6,a) would generally minimize every simultaneously, we are dealing with Pareto optimality. A
popular and acceptable method for finding a discrete setret®aptimal points requires to build a convex
combination of the objectives into a single objective fumeand minimize the single objective over various
values of the control parameter used to combine the obgs;tsee for instancé{]:

( mi)ns Ml(o,a) = Aplp(a) + Aclo(o, a) (16)
o,a)€

with A € (R, U {0})2 and\¢ + Ap = 1.

This algorithm provides a discrete collection of Paretdropt points representative of the entire spec-
trum of efficient solutions as noted inf]. Thus ideally, consistent calibration carried out witmsistent
families involves the entire Pareto optimal set, in corttashe uniqueness for the solution that appears in
the two-step scalar problem.

At this point, note that the program used by Angelini and ldEfZ, 2] in their works, uses a different
goal attainment

l= (UIEQSZC(U’ a)
wherels(o,a), andz(a) are defined trough the identities3) and (14). As a consequence, the program
used by these authors is a degenerate caskgpfijth ¢ fixed equal tal, so it just allows to obtain one
point of the implied trade-off curve.

4 Empirical Results

In this context the main goal is to analyze the impact thatlsrreative interpolation scheme has on the
fitting capabilities of the model. To this end, we use as a mn@ashe daily (on average) relative pricing

errors, hereafteRPE.:
1 i C; = C(6,4,T))

RPE¢ = —
TN Cy

i=1
The same kind of measure is used for the zero-coupon bonespaitd we denote it witRPEp:

L 5~ IDf = D(E(@), &, 2)

RPEp = ; b
We perform such analysis focusing on US market. The realatatsists of 248 daily observations, between
12/09/2001 and 23/08/2002. The data set is composed of d8utisfactors for ten maturities (from 1 to
10 years) and of implied volatilities of at-the-money imsrrate caps with maturities 1, 2, 3, 4, 5, 7, 10
years. This database is provided by Datastream Finanaigic8e

As it have been explored before, daily joint calibration aps and bonds with consistent families must
be properly carried out as a constrained vector optimingitoblem. Figure shows the in-sample fitting
results reported by the MC family for all sample under anialyd/e remark that we have divided them into
two graphs just for the ease of visual inspection. The metfambnvex combinations was run for every
date in sample with several weight vectarsin doing so, we assume the same 10 logarithmically spread
values

. 2
Ao = 10" Wltha::—2+j§ andj =0,1,2,...,9

as the second vector component for all trading dates. Obdbat efficient frontiers with regular shapes

appear all the days nicely revealing the intrinsic multaaibive nature of the consistent calibration. More-
over, note that it can be found very different topologiestfos frontiers depending on the date. Some
days the objectives are conflicting and the better we fit the zeupon bonds the worse we calibrate caps
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RPEc (%)
~

RPEc (%)
N

Figure 2. Daily calibration results for the minimal consistent family. The sample is divided into two
periods for ease of visualization.

portfolio. However, another days we can achieve betterltsefor both components of vector objective
without a trade-off (there exists what is called a utopianptor the implied Pareto curve). The tables on
Tablel show, as a numerical example, the two different situatiompsagned before restricting to the mini-
mal parametrized family. If we look on both tables, it mustls® noted that for a fixed trading date the best
cap fit results may occur withe # 1, even if the objectives are competing. In FigGreve analize more
deeply the latter fact this time for both, MC and ANS, coresisfamilies. We plot the second component
of weight vectors ¢, which is responsible of the best calibration for caps ongigph. Then, we repeat
the same exercise on the bottom graph, searching, in thés frasthe ones which produce the best fit of
the corresponding discount curve. As it is shown, most ofdidags the weight vectqih\p = 0, A\¢ = 1)
produces the best cap calibration results but there is anegligible number of bussiness dates where an-
other weights produce better goals than it. On the zero aides in most of the cases, we find the best fit
results when weights are fixed tap = 0.99, A\c = 0.01), but again, in some dates another weight choices
achieve a better yield curve estimation.

For the shake of simplicity, from now on we will only considée calibration results obtained with
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DAy 1 DAY 2

AD Ac  RPEp (%) RPE¢ (%) AD Ao RPEp (%) RPE¢ (%)
0.99 0.01 0.1695 0.8851 0.99 0.01 0.1321 1.6436

0.98 0.02 0.1705 0.8865 0.98 0.02 0.1347 1.6103
0.97 0.03 0.1714 0.8880 0.97 0.03 0.1372 1.5969
0.95 0.05 0.1722 0.8895 0.95 0.05 0.1393 1.5963
0.92 0.08 0.1728 0.8906 0.92 0.08 0.1423 1.5962

0.87 0.13 0.1733 0.8915 0.87 0.13 0.1452 1.5964
0.78 0.22 0.1736 0.8921 0.78 0.22 0.1472 1.5966
0.64 0.36 0.1738 0.8925 0.64 0.36 0.1484 1.5968
0.40 0.60 0.1739 0.8928 0.40 0.60 0.1492 1.5969
0.00 1.00 0.1740 0.8929 0.00 1.00 0.1497 1.5970

Table 1. Efficient points in the RPEp-RPE¢ space using the method of convex combinations for
two different days in sample. The partial objectives, I and I, are cooperative, for the Day 1 (top).
In contrast, the latter ones are conflicting for the Day 2 (bottom).

SUMMARY STATISTICS

MC _ ANS NS

o 0.0186 0.0221 0.0218

a 0.0838 0.1911 0.1796
C,(c)  0.0934 0.1453 0.1406
C,(a) 02245 0.3922 0.3821
RPEc (%) 1.8059 2.4123 2.5997
RPEp (%) 0.2278 0.0467 0.0567

Table 2. Summary statistics for the calibration results. In-sample descriptive statistics are carried
out using the daily Pareto points with best derivative fit capabilities

daily weights choices that produce the best calibratioittfercaps on every trading date. For instance, this
rational approximation to the problem may be followed by akeaparticipant which pursues a good risk
management or pricing tool restricted to the OTC derivativerket. On the opposite direction, note that
the most desirable behaviour for a regulator (like FedeeseRve or ECB) may be consider the weights
which allow the best fits for the zero rates. Following the fiessional approach to Pareto point selection, in
Table2, we compare summary statistics of the parameter estimatetha in-sample fit measures reported
by NS, MC and ANS families. In addition, Figudeshows the comparison of in-sample fitting results in
time series. The two consistent families under study rdpetter RPE results when we restrict the analysis
to cap data. For RPE on bonds, only the ANS family outperfdd@sn the sample. Recall that this fact is
acceptable since MC family is a family with less number ofgpaeters than the other ones propositioned.
Moreover, on caps, note that the MC family appears to giveebegsults than its consistent counterpart,
ANS. Now, this behaviour can be explained because the magtates considered, market conditions make
the objective functiongy andi¢ to conflict.

5 Conclusions
When calibrating the Hull-White model, a TSIR curve choizétta few market data observations is needed.

In particular it seems to be natural to use families of cuwbkih do not modify their structure under the
future evolution of the model, the so-called consistentilias
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Figure 3. On top, daily weights of the multiobjective program with the best RPE« for both con-
sistent families. On the bottom, we choose the daily values which are responsible for the best
RPEp.

In this work, we choose three families of curves (two comsisfamilies and the popular Nelson-Siegel
family) and we conclude that this choice have an effectivpadnt on the quality of in-sample fitting for
US-market data. Moreover, this paper extends the semitiataton algorithm propositioned in Angelini
and Herzel {].

In a consistent approach the parameters of model are estinj@intly with the esmation of initial
discount function. Thus, from a rigorous point of view, jodalibration of caps and bonds must be viewed
as a constrained vector optimization problem. Althoughntfaén objective of the algorithm is to minimize
the relative differences of cap prices too, note that théorexxtension of the consistent calibration presents
more general features. Such extension is structured te aflore numerical outcomes and we observe that
it allows to better fit results for both, caps and bonds, thamatbove mentioned. In particular, it is possible
to find better cap calibration outcomes with: # 1, and this is definitively different from what worked
Angelini and Herzel ] on Hull-White model, where only the fixed~ = 1 seems to be considered for
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Figure 4. Time Series Comparison.

all consistent families. The empirical findings of this pagleow that, in general, consistent calibration on
every date must to be carried out by analyzing the entireesb&the Pareto curve.
In this sense, this work confirms and complements the showsrigelini and Herzel [, 2] restricte

to a Euro data set. We restrict possible outcomes on eveey batchoosing the Pareto points which are
responsible of better fit results on caps. Then the minimasistent family gives the best performance in
terms of caps pricing errors and becomes a good candidatbdaralibration of the Hull-White model.
The ANS consistent family performs very close to the NelSaegel family, though it seems to be the
best solution for estimating the discount function. Nowis ttould be explained in the context of vector
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optimization. We show empirically the usual competing hiétar followed by the objectives through
the sample considered. Then, the minimal parameterizesistent family relax the performance on the
estimation of the discount function, allowing minor relatpricing errors on caps.

Future empirical research on the matter should includeisfadtor models for capturing more general
TSIR and TSV observed in the market.

Another technical point regards the adaptation of tiiermal Boundary IntersectiogNBl) method to
use it in the calibration problems that usually appear inptieate and public financial institutions. As is
mentioned by Das and Dennis ihZ], NBl method surpass in flexibility as well as efficiency thepplar
method of minimizing weighted combinations of objectivedtions.
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